GAME 231: Visualization and Computer Game Animation
George Mason University
College of Visual and Performing Arts
Computer Game Design
V2.0

Room: Art and Design Building Rm 1018
Term: Spring 2015
Section: 001
Class Hours: Wednesday 7:20-10:00 PM

Instructor: Paul Eric Piccione
Contact: ppiccion@gmu.edu
Office Hours: Fridays 11:00 AM-1:00 PM
Credits: 3

Course description
This course focuses on the concepts, techniques and practice of 3-Dimensional computer animation for games. A strong emphasis will be placed on creating efficient, game-ready assets, as students build and integrate characters into the Unity3D game engine. Students will also learn the basics of texturing, UV mapping and rigging, and will adapt the principles of traditional animation to a game setting.

Prerequisites
The prerequisites for this course are GAME 210 and 230, with a C grade or better, as well as a commitment to learning how 3-Dimensional artwork is created for the gaming medium and a willingness to spend time in the lab and outside of class completing each stage of the class projects. Students should be inquisitive and willing to share with other students techniques they discover as they progress through the assignments.

Objectives
- Become familiar with the tools and techniques used in making 3D game art.
- Demonstrate competency in modeling game-ready and optimized 3D objects.
- Have basic ability texturing models.
- Have working knowledge of importing models into Unity and game pipelines in general.
- Have basic ability to animate 3D models using transforms, curves, and Biped.
- Demonstrate the knowledge, technique, and discipline needed to move on to the advanced course, Game 398.

Assessment and Grading:

Assignments
Students will be given several assignments throughout this course. The assignments are listed at the end of this syllabus. Specifics for each will be given in Blackboard. It is the students’ responsibility to refer to Blackboard and the syllabus to see the exact date and time assignments are due.

Midterm Project
By week 9, students are required to model a humanoid 3D character and submit the assets for this character as the mid-term project. Specifics will be given in Blackboard.

Final Project
At the end of the semester, students will integrate their character into the Unity game engine. The student must animate a core set of motions for the character. The student must also model, texture, and integrate a basic environment into which their character is placed. All of these elements are submitted as the final project. During the scheduled Final Exam date the class will implement their final characters into a Unity scene and control them. Specifics will be given in Blackboard.

Milestone Submission
A milestone submission is an assignment turned in multiple times as it progresses to completion. The final character has multiple milestone submissions. Specifics will be given in Blackboard.
Classroom Participation
Since this is taught as a lab class, significant class time will be spent working on projects with ample time to ask questions and get advice on how best to proceed. Students are expected to actively engage in class discussions, answer questions when prompted, and in general, add to the collective dialogue.

Final Exam
There is no final exam in this course. The final project replaces it.

Grade Weighting and Scale
All grading is done on a point scale used to assess assignments, participation in classroom activities, the mid-term project, and the final project. At the end of the course, the student's grade is a percentage of total points earned over total points possible. Students will see the point value for each assignment posted in Blackboard.

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments (each)</td>
<td>100</td>
</tr>
<tr>
<td>Midterm Project</td>
<td>200</td>
</tr>
<tr>
<td>Final Project</td>
<td>500</td>
</tr>
<tr>
<td>Milestone Submission</td>
<td>50</td>
</tr>
<tr>
<td>Classroom Participation</td>
<td>100</td>
</tr>
</tbody>
</table>

Grade Scale
To receive a grade of "A" a student must earn a minimum of 90% of the coursework point total.
To receive a grade of "B" a student must earn a minimum of 80% of the coursework point total.
To receive a grade of "C" a student must earn a minimum of 70% of the coursework point total.
To receive a grade of "D" a student must earn a minimum of 60% of the coursework point total.
Failure to receive a "D" grade will result in a grade of "F".

Failure to turn in a Final Project will result in a grade of 'F' for the course, regardless of the student's point total, as this project replaces the final exam.

'C' Grade Minimum
Students must have earned a 'C' grade or higher in prerequisite courses in the Game Design Major and Minor. For example, to take GAME 398, a 'C' or higher must have been earned in GAME 231.

Grading Criteria
Assignment and projects are graded based on the criteria given below:
- completeness
- ambition/effort
- specification adherence
- technical execution
- aesthetic qualities
Specific criteria are given in Blackboard for each assignment.

Late Work and Make-up Policy
Late assignments are not accepted. Meeting deadlines is one of the most important aspects of art production. Please pay careful attention to the DUE DATE & TIME for each assignment. DO NOT PROCRASTINATE.
If extenuating circumstances prevent a student from finishing an assignment, the student must contact the instructor BEFORE the assignment is due. Late work is only accepted at the instructor's discretion.

Attendance
Attendance is mandatory. Absences reduce a student's final grade using the chart below. Early departure is considered an absence. Three tardies equal one absence.

Deductions for Absences
<table>
<thead>
<tr>
<th>1 to 3</th>
<th>No deduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1 letter grade</td>
</tr>
<tr>
<td>5</td>
<td>-2 letter grades</td>
</tr>
<tr>
<td>6+</td>
<td>Automatic grade of 'F'</td>
</tr>
</tbody>
</table>
Each class is a building block for the next. Students who miss class are missing important material and typically do not do well in this course. In the event that you have to miss class, you are responsible for making up the work and completing the assignments on time. If you miss a class, you still are responsible for the material covered that day, including project or homework assignments and changes in schedules. Should you miss class, you will first ask classmates what was covered before coming to the Instructor.

Additionally, students will need at least 10 hours of lab time (or the equivalent on their own computers) each week to complete coursework.

Resources

A traditional textbook is not used in this course. Instructions and lessons will be covered in class, with online video examples linked in Blackboard that will review the in-class lessons. These are meant to augment class lectures, not replace them and ARE NOT a viable alternative to attending class.

Several additional resources are recommended for in-depth information:

Recommended Texts:
Title: 3DS Max 2015 Complete Reference Guide
Author: Kelly L. Murdock.
Publisher: SDC
ISBN#: 978-1-58503-911-1

Title: Autodesk 3ds Max 2015 Essentials
Author: Randi L. Derakhshani and Dariush Derakhshani
Publisher: Sybex
ISBN#: 978-1-118-86721-1

Title: Character Animation with 3D Studio Max
Author: Stephanie Reese
Publisher: Coriolis Group
ISBN#: 978-1576100547

Title: The Illusion of Life: Disney Animation
Authors: Frank Thomas and Ollie Johnston
Publisher: Hyperion
ISBN#: 0-7868-6070-7

Title: The Animator’s Survival Kit
Author: Richard Williams
Publisher: Faber and Faber
ISBN#: 0-571-20228-4

Title: Figure Drawing for All It’s Worth
Author: Andrew Loomis
Publisher: Titan Books
ISBN#: 978-0857680983

Websites References
http://www.cgsociety.org/: excellent forums for solving technical problems with 3D programs
http://rhizome.org/: for information about what’s going on in the digital arts
http://animationnation.com/: an excellent animation community site
http://www.11secondclub.com/: The 11-Second Club, a monthly character animation competition

Autodesk Resources:
Interface Overviews:

Tutorials from Essentials:
http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=12754609&linkID=9241175
3ds Max Services, Support and Training Videos:
http://usa.autodesk.com/adsk/servlet/ps/index?siteID=123112&id=5585571&linkID=9241177

Essential Skills Movies:
http://download.autodesk.com/us/3dsmax/skillmoviesv9/

Open Sessions
To aid students with their projects, Room 1018 may be open at specific times (TBD) during the semester. The instructor will be available in these open sessions to answer questions. These sessions are optional, and there will be no lecture and no new material will be covered, though it is strongly encouraged that students take advantage of these opportunities.

Required Class Material:
It is the student’s responsibility to obtain consistent, stable access to 3DS MAX 2015 and other software used in the class (listed below). Students who can use the lab to complete all assignments are not required to have a computer to do the coursework.

Software Needed:
The software below is needed in this course. It is installed on all class and game lab computers. Students do not need to acquire this software IF they are able to use the lab to complete assignments.

3ds max 2015 (student version available at http://students.autodesk.com)
Unity3D (free version available for download from www.unity3d.com)
Photoshop (no free version available).

Online backup, such as Dropbox. It is suggested that students use an online backup service to prevent their project files from being lost. External drives are very useful, but every semester multiple students report lost work due to damaged or misplaced thumbdrives, corrupted files, or dead hard drives. Online backup is a good way to save your data. Dropbox, Google Drive, Spideroak, and Sugarsync are example services that students should explore. Most services offer free storage that is sufficient in size for this course.

How to Be Successful in this Course
Every 3D model represents a puzzle. This class teaches students how to approach and solve these challenges. Modeling is heavy on problem-solving and process and light on by rote memorization. Students who excel in this course are the ones who practice diligently.

Additionally:

- Follow all instructions in class and in any and all follow-up materials.
- Pursue additional help from the resources listed on this syllabus and also elsewhere, such as Google, Youtube, Vimeo, etc.
- Put in the time. Start early, finish early and allow time for polish.
- Attend every session of class.
- Consider taking this course later or adjusting your schedule if you are on credit hour overload or if you are taking other time-consumptive classes (like studio art classes). Previous students claim spending an average of over 15 hours per week on this course.

GMU Honor Code:
To promote a stronger sense of mutual responsibility, respect, trust, and fairness among all members of the George Mason University community and with the desire for greater academic and personal achievement, we, the student members of the university community, have set forth this honor code:

Student members of the George Mason University community pledge not to cheat, plagiarize, steal, or lie in matters related to academic work. See GMU Honor Code: http://academicintegrity.gmu.edu/honorcode/

If you are a student with a disability and you need academic accommodations please see me and contact the Disability Resource Center (DRC) at 703.993.2474. All academic accommodations must be arranged through that office. Students must inform the instructor at the beginning of the semester, and the specific accommodation will be arranged through the Disability Resource Center.

Sign up for the Mason Alert System by visiting the website https://alert.gmu.edu, and an emergency poster exists in each classroom explaining what to do in the event of crises; emergency procedures exist on: http://www.gmu.edu/service/cert

Students must use their MasonLIVE email account to receive important University information, including messages related to this class. See http://masonlive.gmu.edu for more information.

Course Outline and Class Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>Jan 21</td>
</tr>
<tr>
<td></td>
<td>- Syllabus: Objectives and Requirements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3D Game Art, Examples and Discussion</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fundamentals, Part 1</td>
<td>Jan 28</td>
</tr>
<tr>
<td></td>
<td>- The structure of 3D models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Intro to 3DS MAX User Interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3D Primitives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transforms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Intro to keyframes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ASSIGNMENT: BOUNCING BALL, due February 04</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Working with Primitives, Part 1</td>
<td>Feb 04</td>
</tr>
<tr>
<td></td>
<td>- Working with Editable Poly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The Modifier Stack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sub-object Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ASSIGNMENT: BUILD A SIMPLE ROBOT, due February 11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Working with Primitives, Part 2</td>
<td>Feb 11</td>
</tr>
<tr>
<td></td>
<td>- Submit Simple Robot assignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Editing a Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Choose a character design for the Midterm Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- BEGIN MODELING MIDTERM CHARACTER, due March 18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Character Modeling, Part 1</td>
<td>Feb 18</td>
</tr>
<tr>
<td></td>
<td>- Reference Use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Box modeling a torso</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Edge flow</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Character Modeling, Part 2</td>
<td>Feb 25</td>
</tr>
<tr>
<td></td>
<td>- Legs and feet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Arms and hands</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Character Modeling, Part 3</td>
<td>Mar 04</td>
</tr>
<tr>
<td></td>
<td>- Adding Details</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modeling for Animation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Optimization</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Spring Break, no class</td>
<td>Mar 11</td>
</tr>
<tr>
<td>9</td>
<td>Midterm Due and Final Prep</td>
<td>Mar 18</td>
</tr>
<tr>
<td></td>
<td>- Submit Midterm character</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Choose character design for Final Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Begin Final Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MILESTONE 1: FINAL PROJECT CHARACTER MODEL, due April 1</td>
<td></td>
</tr>
</tbody>
</table>
Week 10 Midterm Review and UV Mapping, Part 1 Mar 25
- Review Midterm characters
- Creating Materials
- UV Mapping Basic Objects
- MILESTONE 2: FINAL PROJECT CHARACTER UV MAPPING, due April 8

Week 11 Materials and UV Mapping, Part 2 Apr 01
- Submit Milestone 1
- UV unwrapping
- Stitching
- Pelt and Peel

Week 12 Rigging & Skinning Apr 08
- Submit Milestone 2
- Photoshop Basics
- Intro to Biped
- Skinning
- MILESTONE 3: FINAL PROJECT CHARACTER RIGGED & SKINNED, due April 15

Week 13 Animation & BIPED Fundamentals Apr 15
- Submit Milestone 3
- 12 Principles of Animation
- Biped fundamentals
- Working with poses
- Animating a walk/jump cycle

Week 14 Animation & BIPED Fundamentals Apr 22

Week 15 Character Troubleshooting Apr 29
- Solving common (and uncommon) problems during production
- Working in lab on Final Character

FINAL PROJECT DEADLINE: May 06, 6:30 pm

FINAL EXAM DATE May 06, 7:30 pm
- Bring your completed Final Project to class
- Intro to Unity 3D
- Integrating props into Unity
- Game Engine Integration
- Character Animation Integration

The Syllabus and Assignment Schedule may be revised, based on the instructor’s discretion, to meet the needs of the class.